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The system of motion of a polytropic gas can be reduced to an autonomous form by
using group analysis. A new family of exact solutions are constructed.

1. INTRODUCTION

In this paper, we look for invariant solutions that are particular exact so-
lutions arising from symmetries of the equations of motion of a polytropic gas
and characterized by means of the group analysis approach (see Olver, 1968;
Ovsiannikov, 1982; Sedove, 1959). It has been shown (see Donato and Oliveri,
1993) that the nonautonomous first-order nonlinear partial differential equations
admitting at least two one-parameter Lie groups of transformations with commut-
ing infinitesimal operators (see Ameset al., 1989; Donato, 1992) can be written in
an autonomous form by a suitable use of the canonical variables. With reference
to Donato and Oliveri (1993), it has been shown that the procedure can be applied
to any kind of partial differential equations of any order if some suitable condi-
tions are satisfied. Of course, one can also start from a system in the autonomous
form admitting only trivial constant solutions, and by using appropriate canonical
variables, one can transform it to a system that has nontrivial constant solutions
that, in fact, are nonconstant in original variables. By using this procedure, we are
able to build up new solutions of the equations of motion of a polytropic gas.

By considering Refs. (Doyle, 1999; Feinsilveret al., 2000; Grigorycvet al.,
1999; Manganaro and Oliveri, 1989; Oliveri and Paola, 1999; Petrs, 1993), we see
that in two dimensions, the equations governing the unsteady flow of a polylropic
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gas are given by

ρt + uρx + νρy + ρ(ux + νy) = 0

ut + uux + νuy + (1/ρ)px = 0

vt + uvx + ννy + (1/ρ)py = 0

pt + upx + νpy + γ pux = 0, (1.1)

whereρ is the density,p the pressure,u andν the velocity components in thex
andy directions, respectively, and the adiabatic indexγ is the ratio of the specific
heats, generally a constant between 1 and5

3.

2. DETERMINATION OF LIE GROUPS

Classical Lie group theory is used to determine the classical symmetries of the
system (1.1). The analysis was performed using the symmetry-finding software
package DIMSYM (Sherring, 1993) making use of the symbolic manipulation
package REDUCE (Hearn, 1991). The classical symmetries of the system (1.1)
are given as follows:

X1 = ∂t ;

X2 = ∂x;

X3 = ∂y;

X4 = t∂x + ∂u;

X5 = t∂y + ∂ν ;
X6 = t∂t + x∂x + y∂y;

X7 = 2t∂t + x∂x + y∂y − u∂u − ν∂ν + 2ρ∂ρ ;

X8 = y∂x − x∂y + ν∂u − u∂ν ;

X9 = −y∂x + x∂y − ν∂u + u∂ν ;

X10 = ρ∂ρ + p∂p. (2.1)

Under the operation of commutation, [Xi , X j ] = Xi X j − X j Xi , we can derive
the following four cases:

Case1. In this case, we can easily verify that the operatorsX6 and X10

commute withX7, that is,

[X6, X7] = 0 and [X10, X7] = 0. (2.2)
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Consequently, we write

[X7, X6+ kX10] = 0, (2.3)

wherek is an arbitrary constant.
Upon following two infinitesimal operators related to the system (1.1)

E1 = X7 = 2t∂t + x∂x + y∂y − u∂u − ν∂ν + 2ρ∂ρ ,

E2 = X6+ kX10 = t∂t + x∂x + y∂y + kp∂p + kρ∂ρ. (2.4)

In order to write the system (1.1) in the autonomous form, we choose a suitable
condition by introducing the following canonical variables:

E1T = 1, E1U = 0, E1P0 = 0,

E1ξ = 0, E1R= 0,

E1η = 0, E1H = 0. (2.5)

Thus, the infinitesimal operatorE1 is converted to a translation inT with these
canonical variables. That is,

Ẽ1 = ∂

∂T
. (2.6)

By integrating the system (2.5), one can see that a possible choice of the canonical
variables leads to

T = 1

2
ln t, ν = Rx−1,

ξ = xt−1/2, ρ = Hx2,

η = yt−1/2, p = P0.

u = U x−1, (2.7)

In terms of the transformation of variables, we are able to write the system (1.1)
in the form

∂V

∂T
+ Ã(V)

∂V

∂ξ
+ B̃(V)

∂V

∂η
= 0, (2.8)

where

V =


H
U
R
P0

 , Ã(V) =


U H 0 0
0 U 0 H−1

0 0 U 0
0 P0 0 U

 , B̃(V) =


R 0 H 0
0 R 0 0
0 0 R H−1

0 0 γ P0 R

 .
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The infinitesimal operatorE2 can be written in terms of the canonical variables
and takes the following form:

E2 = T
∂

∂T
+ ξ ∂

∂ξ
+ η ∂

∂η
+ kH

∂

∂H
+ k P0

∂

∂P0
. (2.9)

Now, we can investigate new canonical variablesT̃ , ξ̃ , H̃ , P̃0, Ũ , R̃, andη̃ related
to the operatorẼ2 and defined by

Ẽ2T̃ = 1, Ẽ2Ũ = 0, Ẽ2P̃0 = 0,

Ẽ2ξ̃ = 0, Ẽ2R̃= 0,

Ẽ2η̃ = 0, Ẽ2H̃ = 0. (2.10)

Consequently, we get the new transformation of variables in the form

T̃ = ln T, P0 = P̃0Tk,

ξ̃ = ξT−1, U = Ũ (T, ξ, η),

η̃ = ηT−1, R= R̃(T, ξ, η),

H = H̃Tk. (2.11)

Finally, we obtain the following system in the autonomous form

∂W

∂T
+ ˜̃A(W)

∂W

∂ξ
+ ˜̃B(W)

∂W

∂η̃
= 0, (2.12)

where

W =


H̃
Ũ
R̃
P̃0

 , ˜̃A(W) =


Ũ H̃ 0 0

0 Ũ 0 H̃
−1

0 0 Ũ 0
0 γ P̃0 0 Ũ

 ,

˜̃B(W) =


R̃ 0 H̃ 0
0 R̃ 0 0

0 0 R̃ H̃
−1

0 0 γ P̃0 R̃

 .

3. SOME CLASSES OF PARTICULAR SOLUTIONS

Utilizing the preceding results we can find that the system (1.1) is converted
to the system (2.12) by the following transformation, which is obtained by joining
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(2.7) and (2.11):

T̃ = ln

[
1

2
ln T

]
, p = p̃0

[
1

2
ln T

]k

,

ξ̃ = (xt−1/2)

[
1

2
ln T

]−1

, u = Ũ x−1,

η̃ = (yt−1/2)

[
1

2
ln T

]−1

, ν = R̃x−1,

ρ = H̃ x2

[
1

2
ln T

]k

. (3.1)

In order to build up a particular solution, by inspection, we select a suitable as-
sumption to distinguish various cases.

(I) k = 0, W = W(η̃), Ũ = 0

Returning to the system (2.12), and taking into consideration (3.1), we obtain the
system

[ R̃H̃ ]′ = 0,

R̃R̃
′ + H̃

−1
p′0 = 0,

γ p̃0R′ + R̃ p′0 = 0, (3.2)

where the prime (′) denotes∂/∂η̃. This system leads to the solution

Ũ = 0,

R̃ = γ Z

(γ + 1)B
,

p̃0 =
γ Z

(γ + 1)
,

H̃ = (1+ γ )B2

γ Z
,

whereB andZ are nonzero constants.
Going back to the system (3.1), we see that the corresponding solutions are

given by

u = 0, ν = γ Z

(γ + 1)B
x−1,

p = Z

(γ + 1)
, ρ = (γ + 1)B2

γ Z
x2.
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(II) W = W̃(T̃) or W = W̃(ξ̃ )

In this case we can easily verify that the solutions forŨ , R̃, P̃, and H̃ have the
forms

Ũ = 0, P̃ = Z.

R̃= Q, H̃ = B.

The corresponding solutions are

u = 0, ν = Qx−1,

ρ = Bx2, p = Z,

whereB, Q, andZ are constants.

Case2. We investigate another class of solutions by using another represen-
tation of canonical variables which leads to

T = 1

2
ln t, ν = Ry−1,

ξ = xt−1/2, ρ = Hy2,

η = yt−1/2, p = P0(T, ξ, η),

u = Uy−1. (3.3)

This represents a transformation of variables allowing to write the system (1.1)
in the same form (2.8). Moreover, let us introduce the infinitesimal operatorE2

related to the canonical variables (3.3) in the form

E2 = T
∂

∂T
+ ξ ∂

∂ξ
+ η ∂

∂η
+ kH

∂

∂H
+ k P0

∂

∂P0
. (3.4)

Then the new canonical variables joining to the operatorE2 can be expressed as
follows:

Ẽ2T̃ = 1, Ẽ2Ũ = 0, Ẽ2P̃0 = 0,

Ẽ2ξ̃ = 0, Ẽ2R̃= 0,

Ẽ2η̃ = 0, Ẽ2H̃ = 0, (3.5)

whereupon, it is possible to obtain the new transformation of variables

T̃ = ln T, P0 = P̃0Tk,

ξ̃ = ξT−1, U = Ũ (T̃ , ξ̃ , η̃),

η̃ = ηT−1, R= R̃(T̃ , ξ̃ , η̃),

H = H̃Tk. (3.6)

Consequently, the autonomous form is obtained and has the same expression (2.12).
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4. CLASS OF PARTICULAR SOLUTIONS

In order to find the solution in this case the general canonical variables have
the following form

T̃ = ln

[
1

2
ln t

]
, p = P̃0

[
1

2
ln t

]k

,

ξ̃ = (xt−1/2
)[1

2
ln t

]−1

, u = Ũ y−1,

η̃ = (yt−1/2
)[1

2
ln T

]−1

, ν = R̃y−1,

ρ = H̃ y2

[
1

2
ln t

]k

. (4.1)

It follows from the inspection choice that

k = 0, W = W(ξ̃ ), R̃= 0.

Hence system (2.12) becomes

[Ũ H̃ ]′ = 0,

ŨŨ
′ + H̃

−1
p′0 = 0,

γ p̃0Ũ
′ + Ũ p′0 = 0, (4.2)

where the prime (′) denotes∂/∂ξ̃ .
Exact solution for the system (4.2) can be obtained by some calculations as

follows:

R̃ = 0,

Ũ = γ Z

(γ + 1)B
,

p̃0 =
Z

(γ + 1)
,

H̃ = (1+ γ )B2

γ Z
.

In terms of the original variables, we obtain

ν = 0, u = γ Z

(γ + 1)B
y−1,

p = Z

(γ + 1)
, ρ = (γ + 1)B2

γ Z
y2.
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Case3. In this case, we observe that bothX7 andX4 commute withX6, that is,

[X6, X7] = 0 and [X6, X4] = 0.

Consequently, we write

[X6, X7+ k X4] = 0.

Thus, we can see thatE1 andE2 are two infinitesimal operators admitted by the
system (1.1) as the following:

E1 = X7+ kX4 = 2t∂t + (kt + x)∂x + y∂y + (k− u)∂u − ν∂ν + 2ρ∂ρ ,

E2 = X6 = t∂t + x∂x + y∂y.

The canonical variablesT , ξ , η, U , R, H , andP0 in terms of the operatorE1 are
given by

E1T = 1, E1U = 0, E1P0 = 0,

E1ξ = 0, E1R= 0,

E1η = 0, E1H = 0. (4.3)

By integrating the system (4.3) one can see that a possible choice of the canonical
variables leads to

T = 1

2
ln t, u = k−Uy−1,

ξ = [ke2t + x]t−1/2, ν = Ry−1,

η = yt−1, ρ = Hy2,

p = P0. (4.4)

We note that this representation allows us to write the system (1.1) in the same
form (2.8). Moreover, in terms of the canonical variables (4.3), the infinitesimal
operatorE2 assumes the form

E2 = T∂T + ξ∂ξ + η∂η.
Now, the new canonical variables are in the form

T̃ = ln T, P0 = P̃0(T̃ , ξ̃ , η̃),

ξ̃ = ξT−1, U = Ũ (T̃ , ξ̃ , η̃),

η̃ = ηT−1, R= R̃(T̃ , ξ̃ , η̃),

H = H̃ (T̃ , ξ̃ , η̃), (4.5)
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and

Ẽ2T̃ = 1, Ẽ2U = 0, Ẽ2P0 = 0,

Ẽ2ξ̃ = 0, Ẽ2R= 0,

Ẽ2η̃ = 0, Ẽ2H = 0.

Finally, we obtain the same form (2.12).

5. SOME CLASSES OF PARTICULAR SOLUTIONS

We work on the transformation which are obtained from the systems (4.4)
and (4.5) of the form

T̃ = ln

[
1

2
ln t

]
, p = p̃0,

ξ̃ = [ke2t + x]t−1/2

[
1

2
ln t

]−1

, u = k− Ũ y−1,

η̃ = (yt−1/2
)[1

2
ln T

]−1

, ν = R̃y−1,

ρ = H̃ y2. (5.1)

We discuss some particular solutions as

(i) If k 6= 0, W = W(ξ̃ ), R̃= 0.

After some calculations, we get

R̃ = 0,

Ũ = γ Z

(γ + 1)B
,

P̃0 = Z

(γ + 1)
,

H̃ = (1+ γ )B2

γ Z
.

The corresponding solutions of the original system are

u = k− γ Z

(γ + 1)B
y2, ν = 0,

p = Z

(γ + 1)
, ρ = (γ + 1)B2

γ Z
y2.
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(ii) If W = W(T̃), R̃= 0.

In this case we find that

H̃ = A, Ũ = B,

P̃ = E, R̃= 0,

whereA, B, andE are arbitrary constants. Then the solutions of the main system
are

u = k− By−1, ρ = Ay2,
ν = 0, p = E.

Case4. In this case, we can infer that bothX8 andX9 commute withX7.
Consequently, [X7, X8+ kX9] = 0. We may then writeE1 andE2 as follows:

E1 = 2t∂t + x∂x + y∂y − u∂u − ν∂ν + 2ρ∂ρ ;

E2 = (1− k)y∂x − (1− k)x∂y + (1− k)ν∂u − (1− k)u∂ν. (5.2)

The analysis of the system (5.2) and the canonical variables (4.3) corresponding
to operatorE1 has disclosed a reduction to the system as described by

T = 1

2
ln t, u = Ut−1/2,

ξ = xt−1/2, ν = Rt−1/2,

η = yt−1/2, ρ = Hx2,

p = p0. (5.3)

From the last result we can rearrange the system (1.1) in the form (2.8). Now, we
work on the operatorE2 as before. We introduce the canonical variables related to
operatorE2 and defined by

Ẽ2T̃ = 1, Ẽ2U = 0, Ẽ2P0 = 0,

Ẽ2ξ̃ = 0, Ẽ2R= 0,

Ẽ2η̃ = 0, Ẽ2H = 0. (5.4)

Whereupon we can calculate the new transformation variables

η̃ = ξ2+ η2,

ξ̃ = 1

(1− k)
√
η̃

sin−1

(
ξ√
η̃

)
,

φ = U2+ R2,
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U =
√
φ sin

√
φ

[
1√
η̃

sin−1

(
ξ√
η̃

)
+ Ũ

]
,

R =
√
φ cos

√
φ

[
1√
η̃

sin−1

(
ξ√
η̃

)
+ R̃

]
,

T = T̃ ,

H = H̃ ,

P = P̃0.

Then we obtain the same form (2.12). The transformation linking the original
system (1.1) and the system (2.12) is

T̃ = 1

2
ln t,

ξ̃ = 1

(1− k)
√

[x2+ y2]
sin−1

(
xt−1√

[x2+ y2] t−1

)
,

U =
√
φ sin

√
φ

[
1√

[x2+ y2] t−1
sin−1

(
xt−1√

[x2+ y2] t−1
+Ũ

)]
t−1,

R =
√
φ cos

√
φ

[
1√

[x2+ y2] t−1
sin−1

(
xt−1√

[x2+ y2] t−1

)
+ R̃

]
t−1,

p = P̃0,

ρ = H̃ x2,

η̃ = [x2+ y2]t−1.

6. CLASS OF SOLUTIONS

If k 6= 0, W = W(ξ ). Then we get

[Ũ H̃ ]′ = 0,

Ũ R̃
′ = 0,

ŨŨ
′ + H̃

−1
p′0 = 0,

γ p̃0Ũ
′ + Ũ p′0 = 0,

where the prime (′) denotes∂/∂ξ̃ .
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The solution of the last system is

Ũ = E, H̃ = F,
P̃0 = Z, R̃= A.

We obtain the solution of the original system (1.1) in the form

u =
√
φ sin

√
φ

[
1√

[x2+ y2] t−1
sin−1

(
xt−1√

[x2+ y2] t−1

)
+ E

]
t−1,

ν =
√
φ cos

√
φ

[
1√

[x2+ y2] t−1
sin−1

(
xt−1√

[x2+ y2] t−1

)
+ A

]
t−1,

p = Z,

ρ = Fx2,

whereφ, Z, E, A, andF are arbitrary constants.

Case5. In this case we find thatX2 and X5 commute withX3. Consequently,
[X3, X2+ kX5] = 0. Thus we obtain the following two infinitesimal operators
admitted by the system (1.1)

E1 = ∂y,

E2 = ∂x + tk ∂y + k ∂ν.

According to the algorithm in the last case, we find that the canonical variables
related to the infinitesimal operatorE1 are defined by

E1T = 0, E1U = 0, E1P0 = 0,

E1ξ = 0, E1R= 0,

E1η = 0, E1H = 0. (6.1)

and the infinitesimal operatorE1 can be written in the form

Ẽ1 = ∂η.
It can be shown by integration that the system (6.1) is reduced to the following
system:

T = t, p = P0(T, ξ, η),

ξ = x, u = U (T, ξ, η),

η = y, ν = R(T, ξ, η),

ρ = H (T, ξ, η). (6.2)
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Consequently, the system (1.1) can be written in the form (2.8). Taking into con-
sideration that the operatorE2 and the canonical variables can be represented in
the form

Ẽ2T̃ = 0, Ẽ2U = 0, Ẽ2P0 = 0,

Ẽ2ξ̃ = 1, Ẽ2R= 0,

Ẽ2η̃ = 0, Ẽ2H = 0, (6.3)

we can write the new transformation of variables as follows:

T̃ = T, P0 = P̃0(T̃ , ξ̃ , η̃),

ξ̃ = ξ, U = Ũ (T̃ , ξ̃ , η̃),

η̃ = η − T̃ kξ, H = H̃ (T̃ , ξ̃ , η̃),

R̃ = R+ kξ, (6.4)

and hence, we get the system in the autonomous form as in (2.12). The relation
between (6.2) and (6.4) leads to

T̃ = t, p = P̃0,

ξ̃ = x, u = Ũ ,

η̃ = y− ktx, ν = R̃+ kx,

ρ = H̃ . (6.5)

7. CLASS OF SOME SOLUTIONS

We can obtain special solutions such as

(i) k = 0, W = W(T̃),

for which we have the solutions

u = c1, ν = c2, p = c3, ρ = c4.

(ii) k 6= 0, W = W(η̃), Ũ = 0.

Then the system (1.1) have the solutions

ν = kx+ γ c2

(γ + 1)c1
, u = 0,

p = c2

(γ + 1)
, ρ = (γ+1)c2

1
γ c2

,

whereci (i = 1–4) are nonzero constants.
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Case6. In order to achieve the reduction of the autonomous form, we merely
define

E1 = ∂x

E2 = ∂y + tk ∂x + k ∂u,

whereuponX3 andX4 commute withX2.
Following this result, we observe that Eqs. (2.8) and (2.12) are satisfied, but

the transformation linking the original system (1.1) to the transformed system (2.8)
is given by

T̃ = t, p = P̃0,

ξ̃ = x − kty, u = Ũ + ky,

η̃ = y, ν = R̃,

ρ = H̃ .

Now we takek 6= 0, W = W(ξ̃ ) or (W = W(T̃)), R̃= 0 in order to obtain partic-
ular solutions and after some calculations we have

u = ky+ A, ρ = Q,

ν = 0, p = E.
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